Comprehensive Mapping of the Aortic Cusp: Understanding the Anatomy

Tae-Hoon Kim, MD
Assistant Professor,
Division of Cardiology, Department of Internal Medicine,
Severance Cardiovascular Hospital,
Yonsei University College of Medicine, Seoul, Korea

Anatomy of RVOT and LVOT

Ho SY et al. Heart Rhythm. 2009 Aug;6(8 Suppl):S77-80

Anatomy of Aortic Cusp in CT

By Courtesy of Prof. Uhm

Anatomy of Aortic Cusp in CT

By Courtesy of Prof. Uhm

Anatomy of Aortic Cusp in CT

By Courtesy of Prof. Uhm

Left Ventriculography

Aortogram

LAO RAO

Prevalence of Cusp VT among OTVT

- R wave of inferior leads & III/II ratio: LCC > RCC >>> NCC
- Pacing mapping unreliable

Yamada T et al. J Am Coll Cardiol. 2008 Jul 8;52(2):139-47

ECG Morphology of OT VT

: V1

ECG Morphology of OT VT : Lead I and Transition zone

Hutchinson MD et al. J Cardiovasc Electrophysiol. 2013 Oct;24(10):1189-97

RCC.

R- wave

ECG Morphology of OT VT

Hutchinson MD et al. J Cardiovasc Electrophysiol. 2013 Oct;24(10):1189-97

V2 transition ratio ≥ 0.6

: 95% sensitivity, 100% specificity

Figure 7 Diagnostic Algorithm for Outflow Tract VT With Lead V₃ PVC/VT R/S Transition

If the PVC/ventricular tachycardia (VT) transition to an R>S occurs later than the SR transition (i.e., SR transition lead V_1 or V_2), then the PVC origin is the RVOT (100% specificity). If the PVC transition occurs at or earlier than the SR transition (i.e., SR transition lead V_3 or later), then the V_2 transition ratio is measured. If the transition ratio is <0.6, then RVOT origin is likely. If the transition ratio is \geq 0.6, then LVOT origin is likely (sensitivity 95%, specificity 100%). Abbreviations as in Figures 3 and 4.

Betensky BP et al. J Am Coll Cardiol. 2011 May 31;57(22):2255-62

3D Cusp mapping and ICE image

LCC RCC

Lin D et al. Heart Rhythm. 2008 May;5(5):663-9

LCC mapping

Left coronary cusp

Lin D et al. Heart Rhythm. 2008 May;5(5):663-9

RCC mapping

Right coronary cusp

Lin D et al. Heart Rhythm. 2008 May;5(5):663-9

NCC mapping

Noncoronary cusp

Lin D et al. Heart Rhythm. 2008 May;5(5):663-9

Cusp EGM – NCC vs RCC (RAO View)

Cusp EGM – RCC vs LCC (LAO view)

Quick, bigger amplitude R

Delayed, fragmented R

Unipolar EGM

:Ablation catheter on RCC

Unipolar EGM

:Ablation catheter on RCC

Unipolar EGM

:Ablation catheter on RCC

Case

: M/61, recurred VT after RVOT VT ablation

HR: 85bpm

RF ablation - RVOT posteroseptum

After RF

: upto 50W at RVOT posteroseptum : PVCs (+)

Aortogram

Map (LCC-RCC commissure)

RVOT, LVOT activation map

RVOT, LVOT propagation map

After RFCA

Summary

- Understanding the anatomy is the key
- Be aware of the differences between Cusps
 - Catheter tip direction & position, comparing with aortogram
 - EGM NCC: bigger A, RCC: bigger V small A, LCC: fragmented V
- Utilize unipolar mapping
- ICE is useful
- Limitations of pacing mapping in cusp VT

